R Package Scholar
29,970

workflows: Modeling Workflows

Davis Vaughan  Simon Couch  Posit Software   View description and downloadsView dependenciesGitHub project

2019 Published
1.1.4 Version
0 Citations
3 Authors
Referenced by ⇅ Year
modeltime.h2o: Modeltime "H2O" Machine Learning (Version 0.1.1)

2021
sknifedatar: Swiss Knife of Data (Version 0.1.2)

2021
workboots: Generate Bootstrap Prediction Intervals from a "tidymodels" Workflow (Version 0.2.0)

2022
viruslearner: Ensemble Learning for HIV-Related Metrics (Version 0.0.2)

2024
MLDataR: Collection of Machine Learning Datasets for Supervised Machine Learning (Version 1.0.1)

2022
additive: Bindings for Additive TidyModels (Version 1.0.1)

2021
agua: 'tidymodels' Integration with 'h2o' (Version 0.1.4)

2022
autostats: Auto Stats (Version 0.4.1)

2021
bayesian: Bindings for Bayesian TidyModels (Version 1.0.1)

2021
bundle: Serialize Model Objects with a Consistent Interface (Version 0.1.2)

2022
coefplot: Plots Coefficients from Fitted Models (Version 1.2.8)

2011
easyalluvial: Generate Alluvial Plots with a Single Line of Code (Version 0.3.2)

2018
fastml: Fast Machine Learning Model Training and Evaluation (Version 0.4.0)

2024
finetune: Additional Functions for Model Tuning (Version 1.2.0)

2020
finnts: Microsoft Finance Time Series Forecasting Framework (Version 0.5.0)

2022
gtsummary: Presentation-Ready Data Summary and Analytic Result Tables (Version 2.0.4)

2019
healthyR.ai: The Machine Learning and AI Modeling Companion to 'healthyR' (Version 0.1.0)

2021
healthyR.ts: The Time Series Modeling Companion to 'healthyR' (Version 0.3.1)

2021
ldmppr: Estimate and Simulate from Location Dependent Marked Point Processes (Version 1.0.3)

2024
marginaleffects: Predictions, Comparisons, Slopes, Marginal Means, and Hypothesis Tests (Version 0.24.0)

2021
modeltime.ensemble: Ensemble Algorithms for Time Series Forecasting with Modeltime (Version 1.0.4)

2020
modeltime.resample: Resampling Tools for Time Series Forecasting (Version 0.2.3)

2020
modeltime: The Tidymodels Extension for Time Series Modeling (Version 1.3.1)

2020
nestedmodels: Tidy Modelling for Nested Data (Version 1.1.0)

2022
offsetreg: An Extension of 'Tidymodels' Supporting Offset Terms (Version 1.1.0)

2024
orbital: Predict with 'tidymodels' Workflows in Databases (Version 0.3.0)

2024
probably: Tools for Post-Processing Predicted Values (Version 1.0.3)

2018
recipes: Preprocessing and Feature Engineering Steps for Modeling (Version 1.1.0)

2017
sae.projection: Small Area Estimation Using Model-Assisted Projection Method (Version 0.1.0)

2024
stacks: Tidy Model Stacking (Version 1.0.5)

2020
tabnet: Fit 'TabNet' Models for Classification and Regression (Version 0.6.0)

2021
text: Analyses of Text using Transformers Models from HuggingFace, Natural Language Processing and Machine Learning (Version 1.3.0)

2020
tidyAML: Automatic Machine Learning with 'tidymodels' (Version 0.0.5)

2023
tidyclust: A Common API to Clustering (Version 0.2.3)

2022
tidydann: Add the 'dann' Model and the 'sub_dann' Model to the Tidymodels Ecosystem (Version 1.0.0)

2023
tidymodels: Easily Install and Load the 'Tidymodels' Packages (Version 1.2.0)

2018
tidysdm: Species Distribution Models with Tidymodels (Version 0.9.5)

2023
timetk: A Tool Kit for Working with Time Series (Version 2.9.0)

2017
tune: Tidy Tuning Tools (Version 1.2.1)

2020
vetiver: Version, Share, Deploy, and Monitor Models (Version 0.2.5)

2021
vip: Variable Importance Plots (Version 0.4.1)

2018
viraldomain: Applicability Domain Methods of Viral Load and CD4 Lymphocytes (Version 0.0.6)

2023
viralmodels: Viral Load and CD4 Lymphocytes Regression Models (Version 1.3.1)

2023
viralx: Explainers for Regression Models in HIV Research (Version 1.3.0)

2023
workflowsets: Create a Collection of 'tidymodels' Workflows (Version 1.1.0)

2021

RPKG Scholar presents a tabulation of an author's contribution in the development of R packages stored in the Comprehensive R Archive Network (CRAN). Within this site, we consider package dependencies (suggests,imports,depends,enhances) as citations because we believe that using one's package to develop another is tantamount to citing the author of the package being imported, suggested or enhanced.

rpkg.net © 2022 - 2025 Obi Obianom